Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.915
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1346349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628551

RESUMO

Efficient precision vaccines against several highly pathogenic zoonotic viruses are currently lacking. Proteolytic activation is instrumental for a number of these viruses to gain host-cell entry and develop infectivity. For SARS-CoV-2, this process is enhanced by the insertion of a furin cleavage site at the junction of the spike protein S1/S2 subunits upstream of the metalloprotease TMPRSS2 common proteolytic site. Here, we describe a new approach based on specific epitopes selection from the region involved in proteolytic activation and infectivity for the engineering of precision candidate vaccinating antigens. This approach was developed through its application to the design of SARS-CoV-2 cross-variant candidates vaccinating antigens. It includes an in silico structural analysis of the viral region involved in infectivity, the identification of conserved immunogenic epitopes and the selection of those eliciting specific immune responses in infected people. The following step consists of engineering vaccinating antigens that carry the selected epitopes and mimic their 3D native structure. Using this approach, we demonstrated through a Covid-19 patient-centered study of a 500 patients' cohort, that the epitopes selected from SARS-CoV-2 protein S1/S2 junction elicited a neutralizing antibody response significantly associated with mild and asymptomatic COVID-19 (p<0.001), which strongly suggests protective immunity. Engineered antigens containing the SARS-CoV-2 selected epitopes and mimicking the native epitopes 3D structure generated neutralizing antibody response in mice. Our data show the potential of this combined computational and experimental approach for designing precision vaccines against viruses whose pathogenicity is contingent upon proteolytic activation.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Animais , Camundongos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Vacinas Virais/genética , Epitopos/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
2.
Open Vet J ; 14(1): 90-107, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633144

RESUMO

Background: Being a ubiquitous, highly contagious virus with a continuous mutation and a large number of evolutions worldwide, the infectious bronchitis virus (IBV) continues to wreak problems among Egyptian chickens and generate economic losses. The commonly applied IBV vaccination protocols in broilers include alternatives to classic and/or variant attenuated live virus vaccines. Aim: The current study targeted to assess the protective efficacy of concurrent and successive Ma5 and 4/91 vaccine strain regimens against the field variant II IBV strain (IBV-EGY-ZU/Ck-127/2021) in chickens. Methods: Commercial broiler chickens were vaccinated with Ma5 and 4/91 strains simultaneously at 1 and 14 days of age. The evaluation parameters included clinical protection and humoral and early innate immunity aspects in the renal tissues of vaccinated and infected birds. Results: The vaccine regimen ameliorated the clinical and histopathological lesions against variant II IBV and enhanced body gain as well as succeeded in preventing tracheal shedding and minimizing cloacal shedding of the field virus. The IL-1ß mRNA gene expression was evident as early as 24 hours, with highly significant upregulation at 48 hours post vaccination and 24 hours post challenge (PC) in vaccinated birds. Remarkable upregulation was observed in oligoadenylate synthetases (OAS) expression 48 hours PC in vaccinated and unvaccinated infected birds. The vaccinated birds developed a significant antibody titer of 704.0 ± 111.98 at 28 days of age, with a consistent antibody titer increase after the challenge. Conclusion: Overall, a combination of heterologous protectotype commercial vaccines achieved good protection against the Egyptian variant II IBV strain. This vaccine program could be an effective protocol against the threat posed by IBV viruses circulating in the Egyptian field.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Virais , Animais , Galinhas , Vírus da Bronquite Infecciosa/genética , Egito , Infecções por Coronavirus/veterinária , Vacinas Virais/genética
3.
Open Vet J ; 14(1): 32-45, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633185

RESUMO

Background: Despite the strict preventive immunization used in Egypt, Newcastle disease remained a prospective risk to the commercial and backyard chicken industries. The severe economic losses caused by the Newcastle disease virus (NDV) highlight the importance of the trials for the improvement and development of vaccines and vaccination programs. Aim: In the present study, we evaluated the effectiveness of two vaccination schemes for protection against the velogenic NDV (vNDV) challenge. Methods: Four groups (A-D) of commercial broiler chickens were used. Two groups (G-A and G-B) were vaccinated with priming live HB1 GII simultaneously with inactivated GVII vaccines at 5 days of age, then boosted with live LaSota GII vaccine in group A and live recombinant NDV GVII vaccine in group B on day 16. Groups A to C were challenged with NDV/Chicken/Egypt/ALEX/ZU-NM99/2019 strain (106 Embryo infective dose 50/0.1 ml) at 28 days of age. Results: Two vaccination schemes achieved 93.3% clinical protection against NDV with body gain enhancement; whereas, 80% of the unvaccinated-challenged birds died. On day 28, the mean HI antibody titers were 4.3 ± 0.33 and 5.3 ± 0.33 log2 in groups A and B, respectively. As well as both programs remarkably reduced virus shedding. The two vaccination schemes displayed close protection efficacy against the vNDV challenge. Conclusion: Therefore, using the combination of a live attenuated vaccine with an inactivated genetically matched strain vaccine and then boosting it with one of the available live vaccines could be considered one of the most effective programs against current field vNDV infection in Egypt.


Assuntos
Doença de Newcastle , Vacinas Virais , Animais , Vírus da Doença de Newcastle/genética , Galinhas , Egito , Estudos Prospectivos , Vacinação/veterinária , Vacinas Virais/genética , Vacinas Sintéticas/genética , Genótipo
4.
Viruses ; 16(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543742

RESUMO

The African swine fever virus (ASFV) mutant ASFV-G-∆I177L is a safe and efficacious vaccine which induces protection against the challenge of its parental virus, the Georgia 2010 isolate. Although a genetic DIVA (differentiation between infected and vaccinated animals) assay has been developed for this vaccine, still there is not a serological DIVA test for differentiating between animals vaccinated with ASFV-G-∆I177L and those infected with wild-type viruses. In this report, we describe the development of the ASFV-G-∆I177L mutant having deleted the EP402R gene, which encodes for the viral protein responsible for mediating the hemadsorption of swine erythrocytes. The resulting virus, ASFV-G-∆I177L/∆EP402R, does not have a decreased ability to replicates in swine macrophages when compared with the parental ASFV-G-∆I177L. Domestic pigs intramuscularly (IM) inoculated with either 102 or 106 HAD50 of ASFV-G-∆I177L/∆EP402R remained clinically normal, when compared with a group of mock-vaccinated animals, indicating the absence of residual virulence. Interestingly, an infectious virus could not be detected in the blood samples of the ASFV-G-∆I177L/∆EP402R-inoculated animals in either group at any of the time points tested. Furthermore, while all of the mock-inoculated animals presented a quick and lethal clinical form of ASF after the intramuscular inoculation challenge with 102 HAD50 of highly virulent parental field isolate Georgia 2010 (ASFV-G), all of the ASFV-G-∆I177L/∆EP402R-inoculated animals were protected, remaining clinically normal until the end of the observational period. Most of the ASFV-G-∆I177L/∆EP402R-inoculated pigs developed strong virus-specific antibody responses against viral antigens, reaching maximum levels at 28 days post inoculation. Importantly, all of the sera collected at that time point in the ASFV-G-∆I177L/∆EP402R-inoculated pigs did not react in a direct ELISA coated with the recombinant EP402R protein. Conversely, the EP402R protein was readily recognized by the pool of sera from the animals immunized with recombinant live attenuated vaccine candidates ASFV-G-∆I177L, ASFV-G-∆MGF, or ASFV-G-∆9GL/∆UK. Therefore, ASFV-G-∆I177L/∆EP402R is a novel, safe and efficacious candidate with potential to be used as an antigenically DIVA vaccine.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Vacinas Virais/genética , Sus scrofa , Virulência , Vacinas Sintéticas/genética , Vacinas Atenuadas/genética , Proteínas Recombinantes/genética , Deleção de Genes
5.
Viruses ; 16(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543849

RESUMO

Severe acute respiratory syndrome (SARS)-coronavirus (CoV), Middle Eastern respiratory syndrome (MERS)-CoV, and SARS-CoV-2 have seriously threatened human life in the 21st century. Emerging and re-emerging ß-coronaviruses after the coronavirus disease 2019 (COVID-19) epidemic remain possible highly pathogenic agents that can endanger human health. Thus, pan-ß-coronavirus vaccine strategies to combat the upcoming dangers are urgently needed. In this study, four LNP-mRNA vaccines, named O, D, S, and M, targeting the spike protein of SARS-CoV-2 Omicron, Delta, SARS-CoV, and MERS-CoV, respectively, were synthesized and characterized for purity and integrity. All four LNP-mRNAs induced effective cellular and humoral immune responses against the corresponding spike protein antigens in mice. Furthermore, LNP-mRNA S and D induced neutralizing antibodies against SARS-CoV and SARS-CoV-2, which failed to cross-react with MERS-CoV. Subsequent evaluation of sequential and cocktail immunizations with LNP-mRNA O, D, S, and M effectively elicited broad immunity against SARS-CoV-2 variants, SARS-CoV, and MERS-CoV. A direct comparison of the sequential with cocktail regimens indicated that the cocktail vaccination strategy induced more potent neutralizing antibodies and T-cell responses against heterotypic viruses as well as broader antibody activity against pan-ß-coronaviruses. Overall, these results present a potential pan-ß-coronavirus vaccine strategy for improved preparedness prior to future coronavirus threats.


Assuntos
Lipossomos , Nanopartículas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vacinas Virais , Animais , Camundongos , Humanos , Vacinas de mRNA , SARS-CoV-2/genética , Vacinas contra COVID-19 , Glicoproteína da Espícula de Coronavírus/genética , Modelos Animais de Doenças , Vacinas Virais/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Anticorpos Neutralizantes , RNA Mensageiro/genética , Imunidade , Anticorpos Antivirais
6.
Vaccine ; 42(11): 2895-2908, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38521674

RESUMO

Each year, millions of poultry succumb to highly pathogenic avian influenza A virus (AIV) and infectious bursal disease virus (IBDV) infections. Conventional vaccines based on inactivated or live-attenuated viruses are useful tools for disease prevention and control, yet, they often fall short in terms of safety, efficacy, and development times. Therefore, versatile vaccine platforms are crucial to protect poultry from emerging viral pathogens. Self-amplifying (replicon) RNA vaccines offer a well-defined and scalable option for the protection of both animals and humans. The best-studied replicon platform, based on the Venezuelan equine encephalitis virus (VEEV; family Togaviridae) TC-83 vaccine strain, however, displays limited efficacy in poultry, warranting the exploration of alternative, avian-adapted, replicon platforms. In this study, we engineered two Tembusu virus (TMUV; family Flaviviridae) replicons encoding varying capsid gene lengths and compared these to the benchmark VEEV replicon in vitro. The TMUV replicon system exhibited a robust and prolonged transgene expression compared to the VEEV replicon system in both avian and mammalian cells. Moreover, the TMUV replicon induced a lesser cytopathic effect compared to the VEEV replicon RNA in vitro. DNA-launched versions of the TMUV and VEEV replicons (DREP) were also developed. The replicons successfully expressed the AIV haemagglutinin (HA) glycoproteins and the IBDV capsid protein (pVP2). To assess the immune responses elicited by the TMUV replicon system in chickens, a prime-boost vaccination trial was conducted using lipid nanoparticle (LNP)-formulated replicon RNA and DREP encoding the viral (glyco)proteins of AIV or IBDV. Both TMUV and VEEV replicon RNAs were unable to induce a humoral response against AIV. However, TMUV replicon RNA induced IBDV-specific seroconversion in vaccinated chickens, in contrast to VEEV replicon RNA, which showed no significant humoral response. In both AIV and IBDV immunization studies, VEEV DREP generated the highest (neutralizing) antibody responses, which underscores the potential for self-amplifying mRNA vaccine technology to combat emerging poultry diseases.


Assuntos
Doenças das Aves Domésticas , Vacinas Virais , Humanos , Animais , Galinhas , Vacinas de mRNA , Vacinas Virais/genética , Anticorpos Antivirais , Anticorpos Neutralizantes , RNA , Proteínas do Capsídeo , Doenças das Aves Domésticas/prevenção & controle , Mamíferos/genética
7.
J Virol ; 98(4): e0011224, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38506509

RESUMO

Live-attenuated virus vaccines provide long-lived protection against viral disease but carry inherent risks of residual pathogenicity and genetic reversion. The live-attenuated Candid#1 vaccine was developed to protect Argentines against lethal infection by the Argentine hemorrhagic fever arenavirus, Junín virus. Despite its safety and efficacy in Phase III clinical study, the vaccine is not licensed in the US, in part due to concerns regarding the genetic stability of attenuation. Previous studies had identified a single F427I mutation in the transmembrane domain of the Candid#1 envelope glycoprotein GPC as the key determinant of attenuation, as well as the propensity of this mutation to revert upon passage in cell culture and neonatal mice. To ascertain the consequences of this reversion event, we introduced the I427F mutation into recombinant Candid#1 (I427F rCan) and investigated the effects in two validated small-animal models: in mice expressing the essential virus receptor (human transferrin receptor 1; huTfR1) and in the conventional guinea pig model. We report that I427F rCan displays only modest virulence in huTfR1 mice and appears attenuated in guinea pigs. Reversion at another attenuating locus in Candid#1 GPC (T168A) was also examined, and a similar pattern was observed. By contrast, virus bearing both revertant mutations (A168T+I427F rCan) approached the lethal virulence of the pathogenic Romero strain in huTfR1 mice. Virulence was less extreme in guinea pigs. Our findings suggest that genetic stabilization at both positions is required to minimize the likelihood of reversion to virulence in a second-generation Candid#1 vaccine.IMPORTANCELive-attenuated virus vaccines, such as measles/mumps/rubella and oral poliovirus, provide robust protection against disease but carry with them the risk of genetic reversion to the virulent form. Here, we analyze the genetics of reversion in the live-attenuated Candid#1 vaccine that is used to protect against Argentine hemorrhagic fever, an often-lethal disease caused by the Junín arenavirus. In two validated small-animal models, we find that restoration of virulence in recombinant Candid#1 viruses requires back-mutation at two positions specific to the Candid#1 envelope glycoprotein GPC, at positions 168 and 427. Viruses bearing only a single change showed only modest virulence. We discuss strategies to genetically harden Candid#1 GPC against these two reversion events in order to develop a safer second-generation Candid#1 vaccine virus.


Assuntos
Febre Hemorrágica Americana , Vírus Junin , População da América do Sul , Vacinas Virais , Humanos , Animais , Cobaias , Camundongos , Virulência , Febre Hemorrágica Americana/prevenção & controle , Vacinas Atenuadas/genética , Glicoproteínas/genética , Vacinas Virais/genética
8.
Microb Pathog ; 190: 106630, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556102

RESUMO

Porcine circovirus type 2 (PCV2) is a globally prevalent infectious pathogen affecting swine, with its capsid protein (Cap) being the sole structural protein critical for vaccine development. Prior research has demonstrated that PCV2 Cap proteins produced in Escherichia coli (E. coli) can form virus-like particles (VLPs) in vitro, and nuclear localization signal peptides (NLS) play a pivotal role in stabilizing PCV2 VLPs. Recently, PCV2d has emerged as an important strain within the PCV2 epidemic. In this study, we systematically optimized the PCV2d Cap protein and successfully produced intact PCV2d VLPs containing NLS using E. coli. The recombinant PCV2d Cap protein was purified through affinity chromatography, yielding 7.5 mg of recombinant protein per 100 ml of bacterial culture. We augmented the conventional buffer system with various substances such as arginine, ß-mercaptoethanol, glycerol, polyethylene glycol, and glutathione to promote VLP assembly. The recombinant PCV2d Cap self-assembled into VLPs approximately 20 nm in diameter, featuring uniform distribution and exceptional stability in the optimized buffer. We developed the vaccine and immunized pigs and mice, evaluating the immunogenicity of the PCV2d VLPs vaccine by measuring PCV2-IgG, IL-4, TNF-α, and IFN-γ levels, comparing them to commercial vaccines utilizing truncated PCV2 Cap antigens. The HE staining and immunohistochemical tests confirmed that the PCV2 VLPs vaccine offered robust protection. The results revealed that animals vaccinated with the PCV2d VLPs vaccine exhibited high levels of PCV2 antibodies, with TNF-α and IFN-γ levels rapidly increasing at 14 days post-immunization, which were higher than those observed in commercially available vaccines, particularly in the mouse trial. This could be due to the fact that full-length Cap proteins can assemble into more stable PCV2d VLPs in the assembling buffer. In conclusion, our produced PCV2d VLPs vaccine elicited stronger immune responses in pigs and mice compared to commercial vaccines. The PCV2d VLPs from this study serve as an excellent candidate vaccine antigen, providing insights for PCV2d vaccine research.


Assuntos
Anticorpos Antivirais , Proteínas do Capsídeo , Circovirus , Escherichia coli , Proteínas Recombinantes , Vacinas de Partículas Semelhantes a Vírus , Animais , Circovirus/imunologia , Circovirus/genética , Suínos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/genética , Desenvolvimento de Vacinas , Antígenos Virais/imunologia , Antígenos Virais/genética , Imunoglobulina G/sangue , Análise Custo-Benefício , Feminino , Interferon gama/metabolismo , Imunogenicidade da Vacina
9.
Microbiol Spectr ; 12(4): e0347723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38456681

RESUMO

Canine distemper virus (CDV) poses a severe threat to both domesticated and wild animals, including multiple carnivores. With the continued expansion of its host range, there is an urgent need for the development of a safer and more effective vaccine. In this study, we developed subunit vaccines based on a bacterium-like particle (BLP) delivery platform containing BLPs-F and BLPs-H, which display the CDV F and H glycoprotein antigens, respectively, using the antigen-protein anchor fusions produced by a recombinant baculovirus insect cell expression system. The combination of BLPs-F and BLPs-H (CDV-BLPs), formulated with colloidal manganese salt [Mn jelly (MnJ)] adjuvant, triggered robust CDV-specific antibody responses and a substantial increase in the number of interferon gamma (IFN-γ)-secreting CD4+ and CD8+ T cells in mice. Dogs immunized intramuscularly with this vaccine not only produced CDV-specific IgG but also displayed elevated concentrations of IFN-γ and interleukin 6 in their serum, along with an increase of the CD3+CD4+ and CD3+CD8+ T cell subsets. Consequently, this heightened immune response provided effective protection against disease development and reduced viral shedding levels following challenge with a virulent strain. These findings suggest that this BLP-based subunit vaccine has the potential to become a novel canine distemper vaccine. IMPORTANCE: Many sensitive species require a safe and effective distemper vaccine. Non-replicating vaccines are preferred. We constructed subunit particles displaying canine distemper virus (CDV) antigens based on a bacterium-like particle (BLP) delivery platform. The CDV-BLPs formulated with theMn jelly adjuvant induced robust humoral and cell-mediated immune responses to CDV in mice and dogs, thereby providing effective protection against a virulent virus challenge. This work is an important step in developing a CDV subunit vaccine.


Assuntos
Vírus da Cinomose Canina , Vacinas Virais , Cães , Animais , Camundongos , Vírus da Cinomose Canina/genética , Vacinas Virais/genética , Linfócitos T CD8-Positivos , Anticorpos Antivirais , Proteínas Recombinantes , Vacinas de Subunidades/genética
10.
Arch Virol ; 169(3): 44, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341400

RESUMO

Foot-and-mouth disease is a highly contagious disease that affects cloven-hoofed animals. It has an important socio-economic impact on the livestock industry because it produces a drastic decrease of productivity. The disease has been successfully eradicated from some regions, including North America and Western Europe, but it is still endemic in developing countries. Agriculture plays an important role in the national economy of Vietnam, to which animal production contributes a great proportion. The concurrent circulation of foot-and-mouth disease virus (FMDV) serotypes O, A, and Asia 1 has been detected in recent years, but serotype O remains the most prevalent and is responsible for the highest numbers of outbreaks. Appropriate vaccine strain selection is an important element in the control of FMD and is necessary for the application of vaccination programs in FMD-affected regions. Here, we present updated information about the genetic and antigenic characteristics of circulating strains, collected from endemic outbreaks involving types O and A, between 2010 and 2019. Neutralizing assays showed a good in vitro match between type O strains and the monovalent O1 Campos vaccine strain. High r1 values were obtained (above 0.7) when testing a swine serum pool collected 21 days after vaccination, but the O/VTN/2/2019 strain was an exception. An EPP estimation resulted in a median neutralizing titre of about 1.65 log10, indicating that good protection could be achieved. For type A Asia SEA 97 lineage strains, acceptable individual neutralizing titres were obtained with estimated EPP values over 80% for different combinations of vaccine strains. Taking into account that the r1 value is one tool of a battery of tests that should be considered for estimating the cross-protection of a field strain against a vaccine strain, an in vivo challenge experiment was also performed, yielding a PD50 value of 8.0. The results indicate that South American strains could be potentially used for controlling outbreaks involving these lineages. This study demonstrates the importance of considering strain characteristics when choosing vaccine strains and controls.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Suínos , Vietnã/epidemiologia , Vacinas Virais/genética , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Antígenos Virais/genética , Sorogrupo
11.
Braz J Microbiol ; 55(1): 997-1010, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311710

RESUMO

The swine industry across the globe is recently facing a devastating situation imparted by a highly contagious and deadly viral disease, African swine fever. The disease is caused by a DNA virus, the African swine fever virus (ASFV) of the genus Asfivirus. ASFV affects both wild boars and domestic pigs resulting in an acute form of hemorrhagic fever. Since the first report in 1921, the disease remains endemic in some of the African countries. However, the recent occurrence of ASF outbreaks in Asia led to a fresh and formidable challenge to the global swine production industry. Culling of the infected animals along with the implementation of strict sanitary measures remains the only options to control this devastating disease. Efforts to develop an effective and safe vaccine against ASF began as early as in the mid-1960s. Different approaches have been employed for the development of effective ASF vaccines including inactivated vaccines, subunit vaccines, DNA vaccines, virus-vectored vaccines, and live attenuated vaccines (LAVs). Inactivated vaccines are a non-feasible strategy against ASF due to their inability to generate a complete cellular immune response. However genetically engineered vaccines, such as subunit vaccines, DNA vaccines, and virus vector vaccines, represent tailored approaches with minimal adverse effects and enhanced safety profiles. As per the available data, gene deleted LAVs appear to be the most potential vaccine candidates. Currently, a gene deleted LAV (ASFV-G-∆I177L), developed in Vietnam, stands as the sole commercially available vaccine against ASF. The major barrier to the goal of developing an effective vaccine is the critical gaps in the knowledge of ASFV biology and the immune response induced by ASFV infection. The precise contribution of various hosts, vectors, and environmental factors in the virus transmission must also be investigated in depth to unravel the disease epidemiology. In this review, we mainly focus on the recent progress in vaccine development against ASF and the major gaps associated with it.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas de DNA , Vacinas Virais , Suínos , Animais , Febre Suína Africana/prevenção & controle , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/genética , Vacinas de DNA/genética , Sus scrofa , Vacinas Virais/genética , Vacinas Atenuadas/genética , Desenvolvimento de Vacinas , Vacinas de Produtos Inativados , Vacinas de Subunidades
12.
mBio ; 15(2): e0295823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38231557

RESUMO

Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus, causes severe diarrhea in neonatal piglets, which is associated with a high mortality rate. Thus, developing effective and safe vaccines remains a top priority for controlling PEDV infection. Here, we designed two lipid nanoparticle (LNP)-encapsulated mRNA (mRNA-LNP) vaccines encoding either the full-length PEDV spike (S) protein or a multiepitope chimeric spike (Sm) protein. We found that the S mRNA-LNP vaccine was superior to the Sm mRNA-LNP vaccine at inducing antibody and cellular immune responses in mice. Evaluation of the immunogenicity and efficacy of the S mRNA vaccine in piglets confirmed that it induced robust PEDV-specific humoral and cellular immune responses in vivo. Importantly, the S mRNA-LNP vaccine not only protected actively immunized piglets against PEDV but also equipped neonatal piglets with effective passive anti-PEDV immunity in the form of colostrum-derived antibodies after the immunization of sows. Our findings suggest that the PEDV-S mRNA-LNP vaccine is a promising candidate for combating PEDV infection.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) continues to harm the global swine industry. It is important to develop a highly effective vaccine to control PEDV infection. Here, we report a PEDV spike (S) mRNA vaccine that primes a potent antibody response and antigen-specific T-cell responses in immunized piglets. Active and passive immunization can protect piglets against PED following the virus challenge. This study highlights the efficiency of the PEDV-S mRNA vaccine and represents a viable approach for developing an efficient PEDV vaccine.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vacinas Virais , Animais , Suínos , Feminino , Camundongos , Anticorpos Antivirais , Vacinas de mRNA , Vírus da Diarreia Epidêmica Suína/genética , Vacinas Virais/genética , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Glicoproteína da Espícula de Coronavírus/genética , Diarreia , RNA Mensageiro/genética , Doenças dos Suínos/prevenção & controle
13.
Emerg Microbes Infect ; 13(1): 2300464, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38164797

RESUMO

Genetic changes have occurred in the genomes of prevalent African swine fever viruses (ASFVs) in the field in China, which may change their antigenic properties and result in immune escape. There is usually poor cross-protection between heterogonous isolates, and, therefore, it is important to test the cross-protection of the live attenuated ASFV vaccines against current prevalent heterogonous isolates. In this study, we evaluated the protective efficacy of the ASFV vaccine candidate HLJ/18-7GD against emerging isolates. HLJ/18-7GD provided protection against a highly virulent variant and a lower lethal isolate, both derived from genotype II Georgia07-like ASFV and isolated in 2020. HLJ/18-7GD vaccination prevented pigs from developing ASF-specific clinical signs and death, decreased viral shedding via the oral and rectal routes, and suppressed viral replication after challenges. However, HLJ/18-7GD vaccination did not provide solid cross-protection against genotype I NH/P68-like ASFV challenge in pigs. HLJ/18-7GD vaccination thus shows great promise as an alternative strategy for preventing and controlling genotype II ASFVs, but vaccines providing cross-protection against different ASFV genotypes may be needed in China.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Febre Suína Africana/prevenção & controle , Vacinas Atenuadas/genética , Proteínas Virais/genética , Genótipo , Vacinas Virais/genética
14.
Microbiol Spectr ; 12(1): e0240323, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38047650

RESUMO

IMPORTANCE: Porcine epidemic diarrhea (PED) is a highly infectious and economically significant gastrointestinal disorder that affects pigs of all ages. Preventing and controlling PED is achieved by immunizing sows with vaccines, enabling passive piglet immunization via colostrum. The prevalence of G2b porcine epidemic diarrhea virus (PEDV) continues in China despite the use of commercial vaccines, raising questions regarding current vaccine efficacy and the need for novel vaccine development. Adenovirus serotype 5 (Ad5) has several advantages, including high transduction efficiency, a wide range of host cells, and the ability to infect cells at various stages. In this study, we expressed the immunogenic proteins of spike (S) using an Ad5 vector and generated a PED vaccine candidate by inducing significant humoral immunity. The rAd5-PEDV-S prevented PED-induced weight loss, diarrhea, and intestinal damage in piglets. This novel vaccine candidate strain possesses the potential for use in the pig breeding industry.


Assuntos
Infecções por Adenoviridae , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Feminino , Animais Recém-Nascidos , Adenoviridae , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética , Vírus da Diarreia Epidêmica Suína/genética , Vacinas Virais/genética , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Diarreia/prevenção & controle , Diarreia/veterinária , Genótipo , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/epidemiologia
15.
Int J Biol Macromol ; 255: 128105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981286

RESUMO

Infectious bronchitis (IB) is an acute and highly contagious disease caused by avian infectious bronchitis virus (IBV), resulting in significant economic losses in the global poultry industry. In this study, we utilized a replication-incompetent adenovirus vector derived from chimpanzees for the first time to express the S gene of IBV. The adenovirus was successfully rescued and demonstrated convenient production, good growth performance, and stability on HEK293 A cells. Morphologically, the recombinant adenovirus (named PAD-S) appeared normal under transmission electron microscopy, and efficient expression of the exogenous gene was confirmed through immunofluorescence analysis and immunoblotting. Administration of PAD-S via ocular and nasal routes induced a strong immune response in the chicken population, as evidenced by specific antibody and cytokine measurements. PAD-S was unable to replicate within chickens and showed low pre-existing immunity, demonstrating high safety and environmental friendliness. The robust immune response triggered by PAD-S immunization effectively suppressed viral replication in various tissues, alleviating clinical symptoms and tissue damage, thus providing complete protection against viral challenges in the chicken population. In conclusion, this study successfully developed an IBV candidate vaccine strain that possesses biosafety, high protective efficacy, and ease of production.


Assuntos
Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Virais , Humanos , Animais , Galinhas , Vírus da Bronquite Infecciosa/genética , Pan troglodytes , Glicoproteína da Espícula de Coronavírus/genética , Adenoviridae , Células HEK293 , Vacinas Virais/genética , Proteínas Recombinantes
16.
J Microbiol Biotechnol ; 34(1): 185-191, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-37830223

RESUMO

Various types of vaccines have been developed against COVID-19, including vector vaccines. Among the COVID-19 vaccines, AstraZeneca's chimpanzee adenoviral vaccine was the first to be commercialized. For viral vector vaccines, biodistribution studies are critical to vaccine safety, gene delivery, and efficacy. This study compared the biodistribution of the baculoviral vector vaccine (AcHERV-COVID19) and the adenoviral vector vaccine (Ad-COVID19). Both vaccines were administered intramuscularly to mice, and the distribution of the SARS-CoV-2 S gene in each tissue was evaluated for up to 30 days. After vaccination, serum and various tissue samples were collected from the mice at each time point, and IgG levels and DNA copy numbers were measured using an enzyme-linked immunosorbent assay and a quantitative real-time polymerase chain reaction. AcHERV-COVID19 and Ad-COVID19 distribution showed that the SARS-CoV-2 spike gene remained predominantly at the injection site in the mouse muscle. In kidney, liver, and spleen tissues, the AcHERV-COVID19 group showed about 2-4 times higher persistence of the SARS-CoV-2 spike gene than the Ad-COVID19 group. The distribution patterns of AcHERV-COVID19 and Ad-COVID19 within various organs highlight their contrasting biodistribution profiles, with AcHERV-COVID19 exhibiting a broader and prolonged presence in the body compared to Ad-COVID19. Understanding the biodistribution profile of AcHERV-COVID19 and Ad-COVID19 could help select viral vectors for future vaccine development.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Distribuição Tecidual , Vacinas Virais/genética , Anticorpos Antivirais
17.
Methods Mol Biol ; 2732: 165-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38060125

RESUMO

Diseases caused by Capripoxviruses (CaPVs) are of great economic importance in sheep, goats, and cattle. Since CaPV strains are serologically indistinguishable and genetically highly homologous, typing of closely related strains can only be achieved by whole-genome sequencing. In this chapter, we describe a robust, cost-effective, and widely applicable protocol for reconstructing (nearly) complete CaPV genomes directly from clinical samples or commercial vaccine batches in less than a week. Taking advantage of the genetic similarity of CaPVs, a set of pan-CaPVs long-range PCRs was developed that covers the entire genome with only a limited number of tiled amplicons. The resulting amplicons can be sequenced on all currently available high-throughput sequencing platforms. As an example, we have included a detailed protocol for performing nanopore sequencing and a pipeline for assembling the resulting tiled amplicon data.


Assuntos
Capripoxvirus , Infecções por Poxviridae , Doenças dos Ovinos , Vacinas Virais , Animais , Ovinos , Bovinos , Capripoxvirus/genética , Reação em Cadeia da Polimerase/métodos , Vacinas Virais/genética , Sequenciamento Completo do Genoma , Cabras/genética
18.
Antiviral Res ; 221: 105784, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103699

RESUMO

African Swine Fever (ASF) is a highly contagious disease caused by a double-stranded DNA virus (ASFV). Despite significant advances made over the last decade, issues such as residual virulence and absence of differentiating infected from vaccinated animals (DIVA) capacity remain an obstacle in the development of live attenuated vaccines (LAVs) against ASFV. It is, therefore, necessary to identify novel strategies to improve vaccine safety, by rational mutagenesis of virulence associated genes and generation of DIVA markers. ASFV encodes a HU (histone-like protein from E. coli strain U93) homolog protein, pA104R, which is involved in viral genome assembly and host immune recognition. A phylogenetic analysis revealed that pA104R is highly conserved among ASFV isolates, suggesting that it can be a good target for vaccine design. Thus, we selectively mutated the ß-strand DNA binding region (BDR) of pA104R to attenuate its enzymatic activity, and identified and mutated several B-cell epitopes present in pA104R to generate a negative marker. Residues K64, K66, and R69 in the BDR were identified as relevant for pA104R activity, with double mutation of the first two showing additive attenuation. pA104R-reactive IgM and IgG epitopes were also identified in the bottom of the BDR, with selective mutagenesis drastically reducing antibody recognition and, when combined with mutations in the arm of the BDR, leading to a further reduction of DNA-binding activity. Interestingly, the immunodominant pA104R-reactive IgG epitope was mainly recognized by IgG1 suggesting that pA104R induces a dominant Th2 response. In sum, the rational mutagenesis can reduce pA104R-DNA binding activity and immune reactivity, providing a rationale for the development of an ASFV pA104R-based DIVA vaccine.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas , Vacinas Virais , Suínos , Animais , Febre Suína Africana/prevenção & controle , Histonas/metabolismo , Escherichia coli/genética , Filogenia , Conformação Proteica em Folha beta , Mutagênese , DNA/metabolismo , Imunoglobulina G , Vacinas/metabolismo , Vacinas Virais/genética
19.
Microb Pathog ; 187: 106513, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147968

RESUMO

Since pseudorabies (PR) re-emerged and rapidly spread in China at the end of 2011, researchers have focused on effective vaccine strategies to prevent and control pseudorabies virus (PRV) infection in pig herds. Due to the extensive application of an attenuated vaccine based on the Bartha-K61 strain isolated in Hungary in 1961 and the variation of the PRV strain, it has been suggested that traditional vaccines based on the Bartha-K61 strain offer only partial protection against variant strains. It was therefore evaluated whether the Porcilis® Begonia vaccine, which is based on the NIA-3 strain with deletions in the gE and TK genes, is efficacious against experimental infection with the virulent, contemporary Chinese PRV strain ZJ01. In this study, piglets were vaccinated with Porcilis® Begonia through either the intradermal (ID) route or the intramuscular (IM) route and subsequently challenged intranasally with strain ZJ01 at 4 weeks post-vaccination. An unvaccinated challenge group and an unvaccinated/nonchallenged group were also included in the study. All animals were monitored for 14 days after challenge. Vaccinated and negative control pigs stayed healthy during the study, while the unvaccinated control animals developed lesions associated with PRV ZJ01 challenge, and 44% of these pigs died before the end of the experiment. This study demonstrated that ID or IM vaccination of pigs with a vaccine based on the NIA-3 strain Porcilis® Begonia clinically protects against fatal PRV challenge with the ZJ01 strain.


Assuntos
Begoniaceae , Herpesvirus Suídeo 1 , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Herpesvirus Suídeo 1/genética , Vacinas contra Pseudorraiva , Anticorpos Antivirais , Vacinação/veterinária , Vacinas Virais/genética
20.
Bull Exp Biol Med ; 176(1): 72-76, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38091143

RESUMO

A promising approach to the development of new means for preventing infection caused by tick-borne encephalitis virus can be DNA vaccines encoding polyepitope T-cell immunogens. A DNA vaccine pVAX-AG4-ub encoding an artificial polyepitope immunogen that includes cytotoxic and T-helper epitopes from the NS1, NS3, NS5, and E proteins of the tick-borne encephalitis virus has been obtained. The developed construct ensured the synthesis of the corresponding mRNAs in transfected eukaryotic cells. Immunization of mice with pVAX-AG4-ub induced the formation of a virus-specific T-cell response providing 50% protection from lethal infection with the virus.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Vacinas de DNA , Vacinas Virais , Animais , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vacinas de DNA/genética , Vacinas Virais/genética , Linfócitos T , Imunização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...